Effects of elevated [CO2] on maize defence against mycotoxigenic Fusarium verticillioides
نویسندگان
چکیده
Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi.
منابع مشابه
Interactive Effects of Elevated [CO2] and Drought on the Maize Phytochemical Defense Response against Mycotoxigenic Fusarium verticillioides
Changes in climate due to rising atmospheric carbon dioxide concentration ([CO2]) are predicted to intensify episodes of drought, but our understanding of how these combined conditions will influence crop-pathogen interactions is limited. We recently demonstrated that elevated [CO2] alone enhances maize susceptibility to the mycotoxigenic pathogen, Fusarium verticillioides (Fv) but fumonisin le...
متن کاملWhole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusarium verticillioides
Here, we report the whole-genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides and grows within maize tissue, suggesting potential as an endophytic biocontrol agent.
متن کاملIsolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides.
Bacterial isolates from Mississippi maize field soil and maize rhizosphere samples were evaluated for their potential as biological control agents against Aspergillus flavus and Fusarium verticillioides. Isolated strains were screened for antagonistic activities in liquid coculture against A. flavus and on agar media against A. flavus and F. verticillioides. We identified 221 strains that inhib...
متن کاملGenetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas
Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize i...
متن کاملCharacterization of Bacillus amyloliquefaciens DA12 Showing Potent Antifungal Activity against Mycotoxigenic Fusarium Species
In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture exten...
متن کامل